What You Need

- packet of unflavored gelatin powder
- paper plate
- balloon
- marker
- wool sweater

25 mail

Eléctric

Gelatin

I Pour some gelatin on a plate.
2 Blow up the balloon and tie the opening shut. Use the marker to draw a small "x" on one side

3 Hold the " x " side of the balloon. Hold the balloon about one inch above the gelatin. Don't let the balloon touch the gelatin. What happens?
4 Still holding the " x " side of the balloon, rub the other side on the wool sweater for ten seconds. (If you don't have any wool, rub the balloon on your hair.) Hold the balloon about an inch above the gelatin. What happens?
$2 \mathrm{Som}^{2}$
Now it's time for you to experiment. What happens if you use flavored gelatin instead of unflavored gelatin? Or, what happens if you use salt? What happens if you rub the balloon on a different material, like a paper towel? Choose one thing to change (that's the variable), and predict what you think will happen. Then test it and send your results to ZOOM at pbskids.org/zoom/sci socks stick to other clothes wharged balloon them out of the dryer. When the gelatin's surface is brought near the gelatin, the ged. Things that are becomes oppositely chact. That is why the oppositely charged aturd the balloon. gelatin moves toward the balloon. 5 Slowly raise the balloon. Now, what happens?
Sent in by Devin F. of Dacula, GA

The Arthur Foundations

Broadcastisng the Archurvining Doston. Funding for ZOOM is provided by the National Science Foundation, the Corporation for Public Broadcasting, the Arthur Vining Davis Foundations, and public television viewers. Any opinions, findings, and conclusions or recomn
expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.
TM/@ 2002 WGBH Educational Foundation
pbskids.org/zoom

